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The fairness of federated learning means that the global model cannot discriminate against
any group. Due data heterogeneity, the update direction of some clients will hinder other
clients, so the global model is difficult to treat each user fairly. The current fair federated
learning methods usually use the variance of model performance to measure the fairness,
which can not quantify the fairness of federated learning process; And, they all intervene
from the beginning, which will reduce the convergence speed and model performance;
Moreover, the weights they applied to clients are designed based on experience, so it is dif-
ficult to trade-off between model performance and fairness. To address the above prob-
lems, firstly, we use Gini coefficient to quantify the fairness of federated learning, which
can reflect the fairness of federated learning process in each round. Secondly, we divide
federated learning into two different training stages: label fitting and data fitting, and pro-
pose fairness intervention in the data fitting stage. Thirdly, we propose a fairness federated
optimization algorithm, which introduces fairness penalty term into the objective function,
and obtains the relationship between clients’ gradients and fairness through gradient des-
cent. Experimental results show the effectiveness and fairness of the proposed method.

� 2022 Elsevier Inc. All rights reserved.
1. Introduction

With the rapid growth of modern mobile and IoT (Internet of things) devices, a large amount of data has been generated.
Machine learning based on these data has been applied to various walks of our lives. Conventional machine learning usually
needs to fuse the data between devices on a central server for centralized training. However, as more and more users realize
the problems of data security and user privacy, data integration faces great resistance. In recent years, Google has proposed
federated learning [1,2], which can build a shared global machine learning model among a large number of distributed
devices while keeping users’ data locally, so it has gained increasingly extensive attention. Up to now, the most widely used
method in federated learning is Federated Averaging algorithm (FedAvg) [3]. FedAvg mainly follows three steps in each com-
munication iteration: (a) the server sends the latest global model to the client; (b) the clients receive the global model, train
based on their local datasets, and then send the gradient updates to the server; (c) the server collects the clients’ gradient
updates to aggregate into a new global model. These steps are repeated until convergence.

In federated learning, as the data of the clients are generated independently, they usually show different distribution
characteristics, that is, Non-Independent and Identically Distributed (Non-IID). As the updates are calculated by clients based
on their own local datasets that are heterogeneous, there are divergence between client updates [4]. Therefore, the global
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model that performs well on some clients may not perform well on some of the other clients, giving rise to severe fairness
issue.

An intuitive way to alleviate this problem is to apply a relatively large weight to the updates of clients with poor effect. In
the federated learning process, adjusting the weights of the clients will change the update direction of the global model,
thereby indirectly affecting the loss of the global model. There are rich research lines on using the methods of weighting
clients to solve the fairness problem. Huang et al. [5] proposed FedFa, which gives higher weights to the clients with lower
training accuracy to encourage a more fair distribution of model performance across clients. Li et al. [6] proposed q-Fair Fed-
erated Learning (q-FFL), which thinks of the global model as a resource, and revises the objective function as a-fairness met-
ric [7,8]. In such a setting, the clients with larger losses are given a relatively high weight, thus reducing the model
performance difference of clients and inducing fairness. Li et al. [9] proposed tilted empirical risk minimization (TERM),
which improves the worst-performing losses by paying a penalty on average performance, thus promoting a notion of uni-
formity or fairness. Although these works can alleviate the problem of unfairness in federated learning to a certain extent,
they have the following problems: (a) they generally use the variance of the performances to the fairness of federated learn-
ing, which is an absolute indicator and is related to the accuracy size. The accuracy of federated learning changes with the
training iterations, thus the variance of the performances can not quantitatively evaluate the fairness of federated learning
timely; (b) they intervene in the process of federated learning from the beginning, that is, they weight the updates of the
clients in the whole process of federated learning. However, as Geyer [10] presented, in the early stage of federated learning,
the fluctuation between the updates of two iterations is relatively large, and the updates by clients are similar. Excessive
fairness intervention at this stage not only has little effect on improving fairness, but also may affect the convergence speed.
(c) it is difficult for them to make a trade-off between performance and fairness. The clients’ weights in these methods are
designed empirically. Generally, if they want to achieve greater fairness, they need to increase the weight difference between
devices with good performance and devices with poor performance. However, sometimes when the weight difference is too
large, it will significantly reduce the performance of the global model, and even make the global model unable to converge.

To address the above question, in this work, we define the fairness of federated learning as the Gini coefficient of the test-
ing accuracy based on clients. This idea comes from the concept of ”economic inequalities”. The model performance of each
client can be regarded as the income of the client, then we need to reduce the inequality between the income of each client.
Furthermore, we divide the process of federated learning into two different training stages: label fitting and data fitting as
Geyer [10] suggested, and propose to intervene the fairness in the data fitting stage. Finally, we propose a fairness federated
optimization algorithm, which adds a fairness penalty term to the objective function, and obtains the relationship between
clients’ gradient updates and the fairness of the global model through a gradient descent algorithm.

The contributions of this paper are summarized as follows:

1. We adopt the Gini coefficient of the testing accuracy based on clients to quantify the fairness of federated learning. Gini
coefficient is a relative indicatrix and strongly Lorenz-Consistent, which can report the amount of fairness of each com-
munication round. That can not only help us understand the changes of fairness in the federated learning process, so as to
adjust the weights of clients to achieve the expected fairness and model performance, but also better motivate clients to
participate in the training process.

2. Different from the previous methods to intervene in the whole process of federated learning, we divide federated learning
into two different training stages: label fitting and data fitting, and propose fairness intervention should be executed in
the data fitting stage. Because in this stage, the updates fluctuation drastically shrinks, and the individual updates look
less alike.

3. We propose a fairness federated optimization algorithm. Different from the previous empirical methods, we add a fair-
ness penalty term to the objective function, and obtain the relationship between the clients’ gradient updates and the
global model fairness through gradient descent, so as to improve the fairness of the model while maintaining the perfor-
mance of the global model.

4. To evaluate the advantages of our framework, we conduct experiments on some real datasets, and compare our approach
with many state-of-the-art methods. The experimental results demonstrate the effectiveness of the proposed approach.

The remaining of this paper is organized as follows. Section 2 surveys related work. Section 3 introduces our method.
Experimental results and analysis are summarized in Section 4. Finally, we conclude the paper in Section 5.

2. Related work

Fairness in machine learning has been extensively studied. There are different types of fairness definitions. For example,
Demographic parity [11] refers that for individuals in two different groups, the proportion assigned to each category should
be the same; Individual fairness [11] means that similar individuals should have similar predictions; Equal opportunity [12]
states that the true positive rates of different groups should be equal; Disparate mistreatment [13] states that refers the mis-
classification rates for groups having different values of sensitive attributes should be similar. These existing research on
fairness in machine learning mostly focuses on protecting sensitive attributes of certain individuals or groups of individuals.

In federated learning, the fairness means treating federated learning participants fairly. Wang et al. [14] proposed that
when there is a large divergence between conflicting updates, the global model is biased in favour of the client with a larger
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update, resulting in a significant reduction in the model accuracy of the client with a smaller update. Mohri et al. [15] pro-
posed that the target distribution of federated learning is not necessarily the uniform distribution of all clients’ data. For
example, the data of client is constantly generated. The client with a small amount of data during learning may produce
a large amount of data later, which will affect the global data distribution. The conventional federation learning is biased
towards the clients with a large amount of data or data distribution similar to the global data distribution, which is unfair.
We summarize the fairness of federated learning into two categories: collaborative fairness and min–max fairness.

Collaborative fairness was proposed by Lyu et al. [16], in which different models are distributed to participant clients
according to their contributions, and the high contributors should get better models than the low contributors. Xu et al.
[17] proposed that some participant clients will be at a disadvantage in the contribution assessmen due to the Non-IID data.
Zhang et al. [18] used a task-dependent strategy to measure contributions, in which the agents classify contributions accord-
ing to some publicly verifiable factors, such as data quality, data volume, data collection cost, etc.

Min–max fairness in federated learning was proposed by Li et al. [6], it means that more equitable accuracy allocation
between different clients. As Non-IID data in federated learning, min–max fairness is not to optimize all clients to obtain
the same accuracy, but to reduce the difference of model accuracy of each client as much as possible. Li et al. [6] proposed
q-FFL to give the clients with large errors a relatively high weight via an aggregate reweighted loss parameterized by q. How-
ever, in q-FFL, the accuracy may reduce due to Non-IID data; and the convergence will be unstable as the loss function has
been expanded; moreover, using variance of the performance as the definition of fairness is not good enough, as it is an abso-
lute indicator and is related to the accuracy size. Huang et al. [5] designed a weighting strategy based on the frequency of
training participation and the training accuracy to encourage a more fair distribution of model performance across clients.
Mohri et al. [15] proposed Agnostic Federated Learning (AFL), which optimizes the loss of the worst target distribution
formed by a mixture of the client distributions. Du et al. [19] used kernel reweighting functions to assign a reweighting value
to each training sample to ensure high accuracy and fairness for unknown test data.

Most of the current methods for the fairness of the global model are based on appropriate weight, which give a larger
weight to the clients with higher losses. These weight-based methods need sufficient experience to adjust the weights,
and the performances of the global model depends on how much weight is assigned to each client’s local model. Our global
model is gradient descent-based, and it can automatically tune the parameters of local models without a priori formula, thus
alleviating the need to manually adjust the weights.

3. Method

In this section, we first introduce the classical federated learning method, and formally define the fairness of federated
learning. Then, we propose an appropriate time to intervene the fairness. Finally, we introduce our fairness federated opti-
mization algorithm.

3.1. Classical Federated Learning

The current most widely recognized method in federated learning is Federated Averaging algorithm (FedAvg) [3], which
mostly follow three steps: (i) in each communication iteration, the server selects a random fraction of clients, and sends
them the latest global model; (ii) the selected clients perform training based on their local data to update their local models,
and then send their latest local client models to the server; (iii) the server collects a certain number of the local client models
to aggreate a new global model. The steps repeate until convergence.

The goal of FedAvg is to minimize the empirical risk as follows:
F wð Þ ¼ 1XK
k¼1

Dkj j

XK
k¼1

X
n2Dk

f w; nð Þ; ð1Þ
wherew is the global model parameter vector, K is the number of clients, Dk is the local dataset of client k; Dkj j represents the
number of samples in Dk, and f w; nð Þ is the loss function of the global model parameter vector w in sample n. For client k, if

we denote the fraction of local data Dkj j=PK
k¼1 Dkj j by pk, and the local objective function

P
n2Dk

f w; nð Þ= Dkj j by Fk wð Þ, Eq. 1 can
be rewritten as follows:
F wð Þ ¼
XK
k¼1

pkFk wð Þ: ð2Þ
We assume that there are N clients C1; . . . ;CN participating in the training in t-th round. Each client k calculates the local
updates of the loss function with respect to the global model w:
Dwk ¼ @Fk wð Þ
@w

: ð3Þ
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Then local updates Dwk will be sent to the server. Then, the server aggregates the received local updates to refine the
global model w. The formulas for calculation are as follows:
Fig. 1.
graph i
w tþ1ð Þ ¼ w tð Þ þ at
1
N

XN
k¼1

Dwk; ð4Þ
where at is the learning rate.

3.2. Fairness of Federated Learning

Before introducing Gini coefficient, it is necessary to introduce Lorenz’s Curve to help to understand Gini coefficient. Lor-
enz’s Curve is a graph method to express income inequality. In this paper, the loss of each client is viewed as an income for
that client. In federated learning, the loss inequality over multiple clients is minimized to make the global model more fair. In
federated learning, clients are sorted from low to high according to their loss values. The horizontal axis of the graph is the
cumulative value of client proportion, and the vertical axis of the graph is the cumulative value of loss proportion (from 0 to
1). Then the corresponding cumulative values are calculated respectively. Finally, the Lorenz’s Curve can be obtained by
making a scatter diagram and connecting these points with a smooth curve (see Fig. 1).

When the income distribution is absolutely equal, the two cumulative values are always equal, and the Lorentz curve is a
straight line with a slope of 45� through the origin; when the income distribution is uneven, the Lorentz curve is below the
straight line. Obviously, the closer the Lorentz curve is to the 45� straight line, the lower the degree of inequality; the farther
away the Lorentz curve is from the straight line, the higher the degree of inequality. In the most extreme case, the curve
coincides with the X and Y axes (moving the vertical axis to the right of the graph), and all income is obtained by the last
client.

Gini Coefficient [20] refers to the common index used internationally to measure the income gap of residents in a country
or region. The Gini coefficient can be calculated from the Lorenz’s Curve in Fig. 1, which is equal to the area of part A in the
figure divided by the area of part below the 45� line (i.e. A + B). Since there are only a limited number of clients participating
in the training in federated learning, Gini coefficient can be defined as follows:
G lð Þ ¼ A
AþB ¼ AþB�B

AþB ¼ 1� 2B

¼ 1� 1
K

XK
i¼1

Xi�1

j¼1

ljþ
Xi

j¼1

lj

XK
j¼1

lj

0
BBBB@

1
CCCCA

ð5Þ
where K is the total number of clients, and the clients are sorted from low to high according to their loss, the loss of the client
j is represented by lj. The maximum Gini coefficient is 1 and the minimum is 0. The closer Gini coefficient is to 0, the more
equal income distribution is.

Definition 1. �-Fairness. We quantify the fairness of federated learning as the Gini coefficient of the testing accuracy for all
clients:
The Lorenz’s Curve in federated learning: The horizontal axis of the graph is the cumulative value of client proportion, and the vertical axis of the
s the cumulative value of test accuracy proportion..
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G a1; . . . ; aKð Þ ¼ 1� 1
K

XK
i¼1

Xi�1

j¼1

aj þ
Xi

j¼1

aj

�a

0
BBBB@

1
CCCCA: ð6Þ

P

In Eq. 6, the testing accuracy of the client j is represented by aj; �a ¼ K

i¼1ai is the average of the testing accuracy for all
client, and the clients are sorted from low to high according to testing accuracy, that is, a1 < a2 < . . . < aK . The maximum
Gini coefficient is 1 and the minimum is 0. The closer Gini coefficient is to 0, the more fairness the federated learning is.
Let 0 6 � 6 1, for a trained global model w, if the Gini coefficient of the testing accuracy for all clients is equal to �, we
say that the global model w is �-Fairness. For two trained models w and ~w, and their fairness is � and ~� respectively, we
say that the model w provides a more fair solution to ~w if � < ~�.

Gini coefficient is a relative indicatrix and strongly Lorenz-Consistent, while the variance of the testing accuray, which is
proposed to quantify the fairness of federated learning by q-FFL [6], is an absolute indicator and is related to the accuracy
size. For example, Table 1 shows the accuracy of the global model on 10 clients in communication round i; j; k, where
i > j > k. The accuracy of clients 1 � 10 in Roundj is 19% � 10% higher than that in Roundi. Similarly, the accuracy of clients
1 � 10 in Roundk is 19% � 10% higher than that in Roundj. For intuitively, the global model of Roundk is more fair and effec-
tive than that of Roundi and Roundj. However, the accuray variance of Roundk is greater than that of Roundi and Roundj. Nev-
ertheless, by using our defination of fairness, the fairness of Roundk is 0:116200599, while the fairness of Roundi and Roundj

are 0:143478261 and 0:129881544 respectively. This shows that our definition of fairness can be well quantified the changes
of fairness in the federated learning process, which will help us to understand the changes in the fairness of the global model
in a timely manner.

3.3. The appropriate time to intervene

Most fairness federated learning methods give relatively large weights to the gradient updates of poor performance cli-
ents, so that the global model is biased to poor performance clients, so as to reduce the unfairness of the global model. For
example, FedFa [5], q-FFL [6], and TERM [9]. In the t þ 1-th round, the weights applied to the gradient update of the client kof
these three methods are as follows:

1. FedFa: a �log2Acc
t
k=Acc

� �þ b �log2 1� f tk=f
� �� �

, where Acctk is the training accuracy of the global model generated in

round t on the data of client k, and f tk is the number of training participation of client k. We set a; bð Þ ¼ 0:5;0:5ð Þ.
2. q-FFL: Fq

k wtð Þ(q > 1), where Fk wtð Þ is the training loss of the global model generated in round t on the data of client k;

3. TERM: e
tFk wtð ÞPN

i¼1
etFi wtð Þ t > 0ð Þ, where N is the number of selected clients in round t.

Although these works can alleviate the problem of performance unfairness in federated learning to a certain extent, they
all ignore the dynamic of the process of federated learning. We still take Synthetic [21] as an example. Fig. 2 shows the
degree of fairness intervention of different methods with the global iteration rounds of federated learning. The vertical axis
is the sum of the distances between the weights of the clients, reflecting the degree of fairness intervention. As shown in
Fig. 2, the degree of intervention of these methods in the early process of federated learning is significantly greater than that
in the later stage. The reason is that in the early stage of federated learning, the model losses and accuracies of the initial
global model on the clients are quite different; In the later stage of federated learning, the global model converges slowly,
the difference between the model losses and accuracies of the global model on clients gradually decreases. However, in the
early stage of federated learning, the change of the global gradient updates of two adjacent iterations is relatively large, and
the updates by clients are similar, fairness intervention at this stage has little effect on improving fairness; On the contrary,
in the later stage of federated learning, the gradient gap between the clients is larger, and the difference of the model per-
formance of the clients becomes larger. However, the intervention degree of these methods in the process of federated learn-
ing in the early stage is greater than that in the later stage, which affects the true fairness of the model and even reduces the
performance of the global model.

Definition 2. Global update scales Gs. Let Dwi;jdefine the i; jð Þ-th parameter in an update of the form Dw 2 Rp�q, at some
communication round t. For the sake of clarity, we will drop specific indexing of communication rounds for now. The

parameter i; jð Þ in Dw is computed as Dwi;j ¼ 1
K

PK
k¼1Dw

i;j
k , where Dwi;j

k is the i; jð Þ-th parameter in the update of Dwk. We then
define the global update scales as the sum over all parameter variances in the updated matrix Dw,
Gs ¼ 1
p� q

Xp
i¼0

Xq
j¼0

Dw2
i;j; ð7Þ
which represents the change of the global model in two iterations.
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Table 1
Comparison of variance and Gini coefficient in federated learning.

Roundi Roundj Roundk improve

Client1 0.35 0.4165 0.495635 19%
Client2 0.4 0.472 0.55696 18%
Client3 0.45 0.5265 0.616005 17%
Client4 0.5 0.58 0.6728 16%
Client5 0.55 0.6325 0.727375 15%
Client6 0.6 0.684 0.77976 14%
Client7 0.65 0.7345 0.829985 13%
Client8 0.7 0.784 0.87808 12%
Client9 0.75 0.8325 0.924075 11%
Client10 0.8 0.88 0.968 10%
Variance 0.016666667 0.018035222 0.019146965
Gini 0.143478261 0.129881544 0.116200599

Fig. 2. The degree of fairness intervention of different methods with the global iteration rounds of federated learning.
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Definition 3. Local dissimilarity. We define the variance of parameters of the client k as,
VAR Dwk½ � ¼ 1
p� q

Xp
i¼0

Xq
j¼0

Dwk
i;j � Dwi;j

� �2
: ð8Þ
We then define Vc as the sum parameter variances over all clients in the update matrix as,
Vc ¼ 1
K

XK
k¼0

VAR Dwk½ �: ð9Þ
Further, the federated learning at w is said to be B-local dissimilarity:
B ¼
ffiffiffiffiffiffi
Vc

Gs

s
: ð10Þ
B is a measure of dissimilarity between clients’ updates.
As a sanity check, when all the local updates are the same, we have B ¼ 0. However, in the federated setting, the data

distributions are often heterogeneous and B > 0 due to sampling discrepancies even if the samples are assumed to be IID.
The larger the value of B, the larger the dissimilarity among the local updates.

When should fairness intervention begin? Taking the results of FedAvg on Synthetic [21] as an example, we show the
relationship between the global gradient update scales Gs and local dissimilarity B in Fig. 3. In order to show the results more
intuitively, we select all clients to participate in the training in each round. As observable in Fig. 3, in the initial stage, the
randomly initialized weights are greatly updated, so the gradient updates of two iterations of the global model change
greatly. However, when approaching the local optimal value of the global model, the gradient updates of the global model
will shrink sharply, the accuracy will converge, and the contributions of the clients will offset each other to a certain extent.
Early intervention on the clients of federated learning will cause the updates of the global model to deviate from the real
direction. We consider that if we start to intervene in fairness at the initial stage, the result is not ideal as the updates by
clients are similar. In addition, we observe that the local dissimilarity rises with the number of iterations, as each client opti-
973



Fig. 3. The relationship between the global gradient update scales Gs and local dissimilarity B.
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mizes on their local dataset. We take the closest point between the global update scales and the local dissimilarity as the
separation point, with the label fitting phase on the left and the data fitting phase on the right. We propose that fairness
intervention should be executed in the data fitting stage. At this stage, the global update scales change slowly and better
reflect the real direction of the global model. Moreover, the local dissimilarity is also getting bigger, indicating that the
unfairness is getting bigger. Intervene at this stage will not affect the real direction of the global model gradient update,
but also achieve the desired fairness.

As only a small number of clients are selected to participate in the training in each iteration, the optimal dividing point
cannot be obtained in advance. Therefore, we use the estimation method to obtain the approximate results. Firstly, we use
the sliding windowmethod to calculate the average value of the global update scale Gs in the window, and then calculate the
difference of the global update scale Gs of two adjacent windows, which is recorded as DGs. If the difference of DGs corre-
sponding to the two iterations is small, it indicates that the global update scale has become relatively slow, and fairness
intervention can be carried out at this time. Assuming that the sliding window size is D, in t-th iteration, the server calculates
the difference of DGs between two adjacent windows as follows:
DGt
s ¼

1
D

Xt
i¼t�D

Gi
s �

1
D

Xt�1

i¼t�D�1

Gi
s < g: ð11Þ
The selection of g can be adjusted appropriately according to the sequence of DGs in the previous period.
3.4. Fairness Federated Optimization Algorithm

In our work, we aim to obtain a global modelw whose fairness meets our requirement while minimizing the average loss
of all clients. The accuracy of the model depends on the specific form of the output function, such as SoftMax. On the con-
trary, it is more common to measure the unfairness of the losses of clients. To this end, we take the loss of the global model
on each client k as an income for that client. Specifically, the bias of the global model toward any particular client is mini-
mized by minimizing the inequality over the losses of the selected clients in a communication round. Therefore, the objective
function is to minimize the following loss function:
F wð Þ ¼ 1
K

XK
k¼1

Fk wð Þ þ kG F1 wð Þ; F2 wð Þ; . . . ; FK wð Þð Þ: ð12Þ
The first term is the average loss for all clients by the global model w after the update, while the second is the inequality
of losses by the global model w before the update, and F1 wð Þ > F2 wð Þ > . . . > FK wð Þ. It is worth noting that the inequality
measure is computed over a set of losses from the selected clients. Both terms are a function of the global model w. We
regard the loss of the global model for each client as an income for that client. Then for the federated network, its loss
inequality over multiple clients is minimized to make the global model fairer. Specifically, in the federated learning process,
the deviation of the global model to any specific client is minimized by minimizing the inequality of the losses over clients.
Note that the first term of Eq. 12 is different from the objective function Eq. 2 in FedAvg, Eq. 12 does not consider the dataset
size of clients. That is because FedAvg assumes that the target distribution is the uniform distribution of all clients’ data. As
this assumption is rather restrictive, it will lead to a biased global model toward the clients with a large amount of data.
Therefore, in this paper, the objective function is to minimize the average loss of the global model on all clients’ local training
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data, regardless of the amount of data on the clients. And kis a parameter that controls the proportion of the two terms.
When k ¼ 0, that means no fairness is imposed on the personalized federated learning, which is much like [22]. A larger k
means that put more emphasis on fairness to reduce the difference in training accuracy between clients.

Then we solve the optimization problem through the gradient descent method. The gradients can be computed by:
@F wð Þ
@w

¼ 1
K

XK
k¼1

Dwk þ k
@G F1 wð Þ; . . . ; FK wð Þð Þ

@w
: ð13Þ
G F1 wð Þ; . . . ; FK wð Þð Þ is a composite function of w, and its gradient is calculated as follows:
@G F1 wð Þ;...;FK wð Þð Þ
@w ¼ @G F1 wð Þð Þ

@F1 wð Þ
@F1 wð Þ
@w þ . . .þ @G Fk wð Þð Þ

@Fk wð Þ
@Fk wð Þ
@w

¼ 1
K Dw1 þ 2Dw2 þ . . .þ K K � 1ð ÞDwKð Þ

ð14Þ
Therefore, @F wð Þ
@w is as follows:
@F wð Þ
@w

¼ 1
K

XK
k¼1

Dwk þ 1
K

XK
k¼1

kk k� 1ð ÞDwk: ð15Þ
The server updates the global model w as follows:
w tþ1ð Þ ¼ w tð Þ þ at
1
N

XN
k¼1

@F wð Þ
@w

: ð16Þ
Different from the other methods, in which the clients’ weights are designed empirically, we can obtain the precise rela-
tionship between the clients’ gradient updates and the global model fairness through the gradient descent method.

From Eq. 15, we can see that the parameter k control the amount of fairness. To avoid tuning this parameter, we design an
adaptive parameter k as follows:
@F wð Þ
@w

¼ �
K

XK
k¼1

Dwk þ 1� �ð Þ k k� 1ð ÞXK
k¼1

k k� 1ð Þ
Dwk: ð17Þ
As Eq. 17, the second term is the fairness penalty term. When we want greater fairness, that is, when � is smaller, the second
term is larger, which means that greater emphasis is placed on fairness; On the contrary, when � becomes larger, the first
term is larger, which means that the minimization of average loss is more emphasized.

Algorithm1 illustrates the fairness federated optimization algorithm.

Algorithm1: The fairness federated optimization algorithm

Input: w 0ð Þ;a.
Output: w.
1: for t ¼ 0 to T do
2: //Server:
3: Select some clients k ¼ 1; . . . ;Nf gð Þ, and send the global model wt to them;
4: Waiting for and listening for signals from the selected client;
5: Receive the local updates Dwk and the loss Fk wð Þ sent by clients;
6: Calculate whether to start fairness intervention through Eq. (11);
7: if start intervention then
8: Update the global model w tþ1ð Þ via Eq. (4);
9: else
10: Update the global model w tþ1ð Þ via Eq. (16).
11: end if
12: //Client k, k ¼ 1; . . . ;Nf gð Þ:
13: Receive the server’s global model w ;

14: Calculate the local updates Dwk ¼ @Fk wð Þ
@w ;

15: Send the current local updates Dwk and the loss Fk wð Þ to the server.
16: end for
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4. Evaluation

In this section, we first introduce the experimental settings, including datasets, comparison methods, and experimental
settings. Then we conduct experiments and analyses on the accuracy, fairness, and convergence of the model. We conduct
ablation experiments on the proposed intervention time strategy, and finally, we analyze the experimental parameters.
4.1. Federated Datasets

(1) Synthetic [21]: For each client k, we generate a synthetise dataset Xk;Ykð Þ based on model
y ¼ argmax softmax Wxþ bð Þð , where x 2 R60;W 2 R10�60; b 2 R60;Wk � N lk;1

� �
; bk � N lk;1

� �
;lk � N 0;að Þ; xk � N vk;

Pð Þ,
the diagonal of covariance matrix

P
is
P

i;j ¼ j�1:2. Each element in the average vector vk comes from distribution
N Bk;1ð Þ, where Bk � N 0; bð Þ. Therefore, a controls the difference between the local models of clients, and b controls the dif-
ference between the local data on clients. ”Synthetic-iid” means all devices follow the same data distribution, and
”Synthetic-ab” means heterogeneous distributed datasets generated by Synthetic(a; b). We generate a total of 30 clients,
and the number of data samples on each client follows the power law. Our goal is to learn W and b.

(2) Sent140 [23]: Sent140 includes 1101 tweets accounts, of which each tweet account corresponds to a client. Our task is
text emotion analysis, which we modeled as a binary classification problem and use the LSTM model for classification. The
LSTM classifier includes two LSTM layers and one full connection layer. The model takes a sequence of 25 words as input,
embeds each word into 300-dimensional space using Glove [24], and outputs a binary label.

(3) CIFAR-10 [25]: CIFAR-10 consists of 50;000 training examples and 10;000 testing examples from different 10 classes.
These images are 32� 32 pixels with three RGB channels. We generate 100 clients, and use the Dirichlet function to set dif-
ferent levels of Non-IID as prior work [14]. Cifar10-00 means that the local dataseta are I.I.D. drawn from the global distri-
bution. Cifar10-05 means that the partitioned dataset obeys the dirichlet(a � 0:5) distirbution, and each client has a similar
amount data size. In Cifar10-45, the data distribution is the same as Cifar10-05. However, the local data sizes vary across
clients. We deploy experiments on AlexNet [26], which is a widely used CNNs, and contains 5 convolutional layers and 3
FC layers.
4.2. Compared methods

To verify the effectiveness and fairness of the proposed method, we compare it with FedAvg and other fairness methods:

1. q-FFL[6]: q-FFL regards the global model as a resource serving clients, and assigns greater weight to clients with greater
loss, so as to reduce the model performance difference between clients. The weight it imposes on clients is the q-power of
the local loss of these clients: Fq

k wtð Þ(q > 0), where Fk wtð Þ is the training loss of the global model in t-th round on client k.
The greater the value of q, the greater the degree of fairness intervention.

2. FedFa[5]: Fedfa uses information theory to achieve fairness. It points out that the amount of information available to the
client will vary according to the training accuracy and training frequency. For example, the lower the training accuracy,
the more information the client needs to learn; The more times participate in training, the more information the client
gets. Therefore, Fedfa gives higher weights to clients with lower training accuracy and more training times. FedFa(a; b)
means the proportional effects of the frequency and training accuracy on the global model, in which a controls the
weights of the training accuracy, and b controls the weights of the frequency.

3. TERM [9]: TERM adds a fairness penalty term to the average loss function of clients, and then uses the exponential
smoothing method to trade-off between the average loss and maximum loss of clients. The weight it applies to the client

is etFk wð ÞPN

i¼1
etFi wð Þ t > 0ð Þ, where N is the number of clients selected, Fk wð Þ is the training loss of the global model on client k. The

greater the value of t, the greater the degree of fairness intervention.
4. FedProx [21]: To handle heterogeneous federated data, FedProx limits local model updates by penalizing large changes to

the current model. FedProx is similar to FedAvg, but is more robust and has more stable convergence than FedAvg.
5. FedFV [14]: FedFV identify that conflicting gradients with large differences cause unfairness. It mitigates potential inter-

nal conflicts and external conflicts among clients before averaging their gradients. a represents the proportion of the cli-
ents that keep their original gradients, and s controls the degree of mitigating external conflicts. We set a ¼ 0:1; s ¼ 10.

6. FedAvg[3]: Fedavg is currently the most widely recognized federated averaging algorithm. The server collects gradient
updates of clients and aggregates them into a new global model by averaging. The weight it imposes on the client is
pk, indicating the proportion of local data of the client k in all data pk ¼ Dkj j=PK

k¼1 Dkj j. It shows that the weight applied
by FedAvg has nothing to do with the model performance of clients, but only with the amount of data of clients.
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4.3. Experimental Settings

For these datasets, we set the learning rate a as 0.01, 0.1 and 0.1 respectively, and randomly select 10 clients for training
in each iteration. The batch sizes of the Synthetic, Sent140 and Cifar10 are 32, 64 and 64, respectively. We run 200, 400 and
600 iterations respectively on Synthetic, Sent140 and Cifar10, and select the results of the last 50 iterations for statistics.

4.4. Experiments Result Analysis

In this section, we conduct experiments and analyze results on the accuracy and fairness of the model. Table 1.

4.4.1. Accuracy
Fig. 4 shows the average testing accuracy of different methods with the number of iterations on Synthetic, Sent140 and

Cifar10. Table 2 shows the comparison of testing accuracy and fairness of different methods, including the accuracy of the
worst 10% client and the best 10% client.

From Fig. 4 and Table 2, we can see that the average testing accuracy of our proposed method FedGini is higher than other
methods on Synthetic-00, Synthetic-05, Synthetic-11, Sent140, and Cifar10. And, on Synthetic-iid, FedGini’s performance is
also very close to that of FedFV. The average testing accuracy of the worst 10% clients has improved significantly: On
Synthetic-11, Sent140, and Cifar10, FedGini is higher than other methods, and on Synthetic-00 and Synthetic-iid, the perfor-
mance of the worst 10% clients are very close to that of the highest methods.

It is noted that the accuracy of q-FFL (q = 1) on Synthetic-00, Synthetic-05 and Synthetic-11 is a little higher that of
FedAvg. And, the accuracy of q-FFL (q = 1) is lower than that of FedAvg on other datasets. This indicates that the fairness
intervention imposed by q-FFL affects the convergence of the model. Especially when q ¼ 2, the greater the degree of fairness
intervention, the slower the convergence of the model. Similarly, the accuracy of TERM is higher than that of FedAvg on
Synthetic-05, but lower on Synthetic-iid, Synthetic-11, Sent140, and Cifar10. As for Synthetic-00, TERM (T = 1) improves
the accuracy than FedAvg, but TERM (T = 0.1) decreases the accuracy. This indicates that, the parameters have a great impact
on the performance of the model. Sometimes, larger fairness parameters will affect the convergence and performance of the
model.

We also found that on the IID datasets (Synthetic-iid and Cifar10-00), and the dataset with balanced data volume
(Cifar10-05), FedAvg performes well. The fairness intervention on these datasets should be smaller, otherwise it may lead
to the decline of model performance. For example, the performance of FedProx and FedFa on Synthetic-iid is lower than that
of FedAvg. Our method FedGini and FedFV perform well on all datasets. The experimental results show that the fairness
intervention degree imposed by our method FedGini is appropriate, which does not cause the decline of the model perfor-
mance, but has a certain degree of improvement. This proves the robustness of FedGini.

4.4.2. Fairness
Fig. 5 shows the Gini coefficient of testing accuracy of different methods on Synthetic, Sent140 and Cifar10 with the num-

ber of iterations, which reflects the fairness of the federated learning process. Combined with Table 2, it can be seen that the
Gini coefficient of FedGini’s testing accuracy on Synthetic-00, Synthetic-05, Synthetic-11, Sent140, and Cifar10 is lower than
other methods. And, on Synthetic-iid, FedGini’s Gini coefficient is very close to that of FedFV. This indicates that FedGini will
lead to more fair model accuracy.

We notices that the Gini coefficient curves of TERM (t = 0.1) and TERM (t = 1) has a cross-point on Synthetic. Similarly,
the Gini coefficient curves of q-FFL (q = 1) and q-FFL (q = 2) has a cross-point on Synthetic-00 and Synthetic-11. This shows
Fig. 4. The average testing accuracy.
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Table 2
Comparison of model accuracy and fairness of different methods.

Datasets Methods Accuracy Worst 10% Best 10% Variance Gini

Synthetic-iid q-FFL q = 1 59.39%�0.34 28.89%�2.55 97.78%�0.00 327�17 0.167�0.005
q = 2 56.89%�0.36 19.44%�0 96.27%�1.04 401�6 0.188�0.001

TERM t = 0.01 57.82%�0.44 21.44%�2.67 97.78%�0.00 385�24 0.181�0.005
t = 1 57.70%�0.40 20.67%�2.30 97.78%�0.00 392�22 0.182�0.004

FedProx 61.54%�0.47 34.72%�0 97.78%�0.00 260�4 0.140�0.003
FedFV 85.74%�0.16 71.25%�1.31 100%�0.00 61�6 0.049�0.002

FedFa a ¼ 0; b ¼ 1 73.27%�0.27 43.45%�0 94.07%�0.00 207�4 0.108�0.002
a ¼ 0:5;b ¼ 0:5 72.65%�0.35 43.45%�0 94.07%�0.00 210�1 0.111�0.001
a ¼ 1; b ¼ 0 72.26%�0.10 43.45%�0 94.07%�0.00 209�4 0.111�0.000

FedAvg 84.26%�0.54 67.36%�1.48 100%�0.00 81�9 0.062�0.004
FedGini 84.48%�0.36 67.26%�1.04 100%�0.00 84�6 0.059�0.002

Synthetic-00 q-FFL q = 1 78.96%�1.13 17.22%�1.36 100%�0 613�40 0.158�0.008
q = 2 70.58%�1.69 7.52%�5.97 100%�0 855�118 0.220�0.018

TERM t = 0.01 67.92%�1.12 0%�0 100%�0 1255�79 0.274�0.014
t = 1 77.28%�0.49 13.89%�0 100%�0 622�11 0.163�0.004

FedProx 77.82%�0.42 9.56%�2.49 100%�0 755�40 0.174�0.005
FedFV 84.24%�0.55 43.5%�4.93 100%�0 341�35 0.109�0.006

FedFa a ¼ 0; b ¼ 1 82.62%�0.25 34.89%�3.25 100%�0 393�32 0.121�0.004
a ¼ 0:5;b ¼ 0:5 82.93%�0.32 35.17%�3.17 100%�0 394�29 0.121�0.004
a ¼ 1; b ¼ 0 83.08%�0.24 35.94%�2.51 100%�0 386�21 0.119�0.003

FedAvg 76.39%�0.88 10.33%�1.93 100%�0 785�47 0.183�0.008
FedGini 84.61%�0.39 42.44%�2.89 100%�0 336�19 0.106�0.004

Synthetic-05 q-FFL q = 1 79.49%�0.38 22.22%�0 100%�0 590�12 0.156�0.002
q = 2 61.50%�1.77 14.21%�1.37 100%�0 815�44 0.263�0.015

TERM t = 0.01 73.01%�0.55 11.11%�0 100%�0 850�21 0.212�0.005
t = 1 75.34%�0.42 22.22%�0 100%�0 573�11 0.169�0.003

FedProx 75.56%�0.34 13.41%�2.55 100%�0 863�37 0.203�0.005
FedFV 81.20%�0.83 37.75%�2.84 100%�0 453�49 0.140�0.009

FedFa a ¼ 0; b ¼ 1 79.66%,0.40 31.59%�3.11 100%�0 555�38 0.157�0.005
a ¼ 0:5;b ¼ 0:5 80.30%�0.34 34.92%�1.50 100%�0 501�22 0.149�0.004
a ¼ 1; b ¼ 0 80.12%�0.38 33.21%�1.80 100%�0 518�28 0.151�0.004

FedAvg 71.90%�0.67 1.14%�0 100%�0 798�29 0.242�0.006
FedGini 81.20%�0.84 37.78%�2.86 100%�0 453�49 0.140�0.009

Synthetic-11 q-FFL q = 1 75.96%�1.14 33.32%�2.99 100%�0 537�44 0.169��0.009
q = 2 64.77%�1.43 7.27%�3.55 100%�0 861�40 0.252�0.011

TERM t = 0.01 69.84%�1.48 5.68%�0.61 100%�0 915�25 0.236�0.010
t = 1 71.34%�0.90 14.70%�3.59 100%�0 826�43 0.220�0.008

FedProx 76.49%�0.67 29.89%�4.14 100%�0 565�31 0.170�0.005
FedFV 78.07%�1.92 32.80%�7.48 100%�0 546�105 0.163�0.019

FedFa a ¼ 0; b ¼ 1 79.91%�0.61 42.44%�3.81 100%�0 451�39 0.144�0.006
a ¼ 0:5;b ¼ 0:5 79.91%�0.71 42.11%�4.39 100%�0 452�45 0.144�0.007
a ¼ 1; b ¼ 0 79.97%�0.77 42.61%�5.17 100%�0 448�50 0.143�0.008

FedAvg 74.26%�1.08 22.47%�1.62 100%�0 613�35 0.188�0.009
FedGini 80.08%�0.25 44.44%�0 100%�0 410�3 0.139�0.001

Sent140 q-FFL q = 1 61.20%�0.11 11.08%�1.31 99.84%�0.56 734�51 0.252�0.009
q = 2 61.15%�0.18 11.79%�1.50 99.67%�0.83 706�60 0.247�0.011

TERM t = 0.01 60.84%�0.09 8.71%�0.00 100%�0.00 801�2 0.266�0.001
t = 1 60.82%�0.09 8.71%�0.00 100%�0.00 802�1 0.266�0.001

FedProx 66.79%�3.17 28.52%�8.35 98.34%�1.90 432�137 0.175�0.034
FedFV 67.06%�2.89 29.08%�8.40 98.38%�1.84 426�140 0.173�0.034

FedFa a ¼ 0; b ¼ 1 61.15%�0.16 10.26%�1.36 99.95%�0.19 761�44 0.257�0.008
a ¼ 0:5;b ¼ 0:5 61.43%�0.24 12.70%�2.64 99.48%�1.20 690�87 0.243�0.017
a ¼ 1; b ¼ 0 61.48%�0.46 14.20%�3.11 98.99%�1.72 647�100 0.234�0.019

FedAvg 63.85%�1.33 22.04%�6.03 97.88%�2.62 805�117 0.198�0.029
FedGini 67.24%�2.88 29.89%�7.89 98.23%�1.90 411�131 0.169�0.032

Cifar10-00 q-FFL q = 1 57.18%�0.32 48.49%�0.44 66.41%�0.43 25�1 0.049�0.0015
q = 2 53.87%�0.30 45.02%�0.32 62.46%�0.34 24�0.8 0.051�0.0011

TERM t = 0.01 29.88%�0.15 21.88%�0.26 38.91%�0.28 26�1 0.096�0.0022
t = 1 29.88%�0.17 21.84%�0.29 38.89%�0.26 26�1 0.097�0.0022

FedProx 66.46%�0.38 57.87%�0.60 74.61%�0.68 23�2 0.041�0.0020
FedFV 66.80%�0.39 58.62%�0.67 74.94%�0.53 22�2 0.040�0.0019

FedFa a ¼ 0; b ¼ 1 67.37%�0.43 59.70%�0.73 74.77%�0.73 19�2 0.036�0.002
a ¼ 0:5;b ¼ 0:5 67.19%�0.45 59.86%�0.91 74.84%�0.58 19�2 0.036�0.0020
a ¼ 1; b ¼ 0 67.23%�0.46 59.48%�0.76 74.25%�0.57 18�2 0.036�0.002

FedAvg 66.75%�0.37 58.74%�0.57 74.91%�0.71 23�2 0.040�0.0021
FedGini 67.43%�0.32 59.58%�0.64 74.55%�0.45 18�2 0.035�0.002

Cifar10-05 q-FFL q = 1 56.85%�0.24 48.58%�0.37 65.93%�0.36 26�1 0.050�0.001
q = 2 53.18%�0.37 44.51%�0.53 62%�0.32 25�1 0.053�0.001
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Table 2 (continued)

Datasets Methods Accuracy Worst 10% Best 10% Variance Gini

TERM t = 0.01 31.30%�0.31 23.55%�0.43 39.24%�0.29 20�1 0.081�0.003
t = 1 31.30%�0.32 23.48%�0.45 39.21%�0.29 20�1 0.082�0.003

FedProx 65.76%�0.46 57.79%�0.76 73.38%�0.69 20�2 0.039�0.002
FedFV 65.93%�0.40 58.11%�0.67 73.48%�0.75 20�2 0.038�0.002

FedFa a ¼ 0; b ¼ 1 65.73%�0.43 56.89%�0.79 73.38%�0.75 23�2 0.041�0.002
a ¼ 0:5;b ¼ 0:5 65.97%�0.44 57.87%�0.67 73.20%�0.66 19�2 0.038�0.002
a ¼ 1; b ¼ 0 66.04%�0.44 58.04%�0.79 73.60%�0.70 21�2 0.038�0.002

FedAvg 65.98%�0.47 58.01%�0.76 73.71%�0.68 20�2 0.039�0.002
FedGini 66.50%�0.39 58.65%�0.55 74.06%�0.71 21�1 0.038�0.002

Cifar10-45 q-FFL q = 1 55.56%�0.34 47.36%�0.49 63.61%�0.52 22�1 0.0477�0.001
q = 2 51.26%�0.39 42.39%�0.39 59.70%�0.47 24�1 0.054�0.001

TERM t = 0.01 31.57%�0.44 23.74%�0.42 39.35%�0.36 20�1 0.080�0.003
t = 1 31.58%�0.42 23.73%�0.46 39.36%�0.38 20�1 0.081�0.003

FedProx 62.30%�3.73 53.69%�3.68 70.60%�3.72 24�3 0.044�0.004
FedFV 65.79%�0.92 57.10%�1.23 73.96%�0.88 23�2 0.041�0.002

FedFa a ¼ 0; b ¼ 1 65.73%�0.77 57.64%�1.12 73.92%�0.99 22�2 0.040�0.002
a ¼ 0:5;b ¼ 0:5 65.93%�0.84 57.55%�1.16 73.99%�0.86 22�2 0.040�0.002
a ¼ 1; b ¼ 0 65.85%�1.02 57.21%�1.04 74.01%�1.14 23�3 0.041�0.002

FedAvg 65.55%�2.98 56.63%�3.03 73.18%�2.96 22�2 0.041�0.003
FedGini 66.17%�0.60 58.10%�0.88 73.97%�0.59 21�2 0.039�0.002

Fig. 5. The Gini coefficient of testing accuracy.
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that in the stage before the cross-point, the methods with larger fairness intervention converge more slowly, while in the
stage after the cross-point, these methods will have a faster convergence speed. In addition, the performance of TERM (t
= 0.1) and TERM (t = 1) on the Sent140 is very similar: the Gini coefficient changes greatly in the first 10 rounds and basically
doesn’t change after the 10th round, indicating that the fair intervention in the early stage was too large and the intervention
in the later stage was too small. These experimental results show that the fairness intervention in the early stage will slow
down the convergence speed of the model, and the greater the degree of intervention, the slower the convergence; Fairness
intervention in the later stage of federated learning can improve the convergence speed, and the greater the degree of inter-
vention, the faster the convergence speed. Given all of that, we can see that the fairnesses of q-FFL and TERM in different
datasets are quite different, and the influence of parameters is also great, indicating that these methods are not suitable
for different datasets, and the selection of parameters is difficult. Our method FedGini performs best on Synthetic, Sent140
and Cifar10, which shows that FedGini is more stable.

By comparing the Gini coefficient and variance, we find that the variance and Gini coefficient of q-FFL (q = 2) on
Synthetic-11 are 815 and 0.263 respectively, while that of TERM (t = 0.01) are 850 and 0.212 respectively. The testing accu-
racy of q-FFL (q = 2) and TERM (t = 0.01) on Synthetic-11 are 61.50 and 73.01 respectively. We can see that the worse the
model performance is, the smaller the variance is, so the variance is not suitable to compare the models with different per-
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formances. Conversely, the Gini coefficient can quantify the fairness of the federated learning process, and can be applied to
compare the fairness of models with different performances.

4.5. Ablation Experiment

To illustrate the role of intervention time strategy, we set up two comparison methods: One is that FedGini conducts fair-
ness intervention from the beginning; The other is that FedGini only intervenes in the data fitting stage. We set � ¼ 0, and the
data fitting stage on Synthetic-11 is after the 100th round, the data fitting stage on Sent140 is after the 220th round, and the
data fitting stage on Cifar10-05 is after the 400th round. Fig. 6 and Fig. 7 respectively show the average training accuracy and
Gini coefficient of training accuracy of the two methods on different datasets.

It can be seen from Fig. 6a and Fig. 7a that the convergence speed of FedGini with intervention time strategy on Synthetic-
11 is much faster than that of FedGini with fairness intervention from the beginning, and the curve is smoother, indicating
that the model performance and fairness are more stable. This proves that the fairness intervention in the early stage of fed-
erated learning will slow down the convergence speed.

From Fig. 6b, Fig. 7b, Fig. 6c, and Fig. 7c, we can also see that FedGini with intervention time strategy has faster conver-
gence speed on Sent140 and Cifar10-05. In addition, we found that in Fig. 6b, FedGini, which conducts fairness intervention
from the beginning, only changes the accuracy in the first 20 rounds, and the accuracy curve after 20 rounds is unchanged,
indicating that the fairness intervention in the early stage of federated learning is too large, which seriously damages the
performance of the model. In Fig. 7b, the fairness of FedGini who intervened in fairness from the beginning is no better than
that of FedGini who intervened later, which shows that the fairness intervention in the early stage of federated learning can
not achieve the desired fairness.

In conclusion, it shows that the intervention time strategy can accelerate the convergence speed of the model and lead to
better fairness.

4.6. Parameter Analysis

FedGini only needs to adjust �, which is the expected fairness. �is a Gini coefficient, so it ranges from 0 to 1. The smaller
the �, the greater the expected fairness. Accordingly, the larger �, the smaller the expected fairness. When � ¼ 1:0, it means
that FedGini does not consider fairness. Note that FedGini (� ¼ 1:0) is different from FedAvg, FedGini does not consider the
weight of the clients’ dataset size for fairness. Table 3 summarizes the testing accuracy and model fairness under different
fairness constraints. Fig. 8 and Fig. 9 respectively show the average training accuracy and the Gini coefficient of training
accuracy of FedGini under different fairness constraints.

First of all, we found that the testing accuracy difference and the Gini coefficient of testing accuracy under different
parameters are small, that is, the FedGini can achieve good performance under any parameters, which proves the robustness
of the proposed method.

Then, from Table 3, we can see that FedGini (� ¼ 0:0) has smaller Gini coefficient of testing accuracy than FedGini
(� ¼ 1:0), and the worst 10% clients have higher testing accuracy on both Synthetic-11 and Sent140. Moreover, the average
testing accuracy of FedGini (� ¼ 0:0) is lower than that of FedGini (� ¼ 0:5) on Sent140 and Cifar10-05. This shows that Fed-
Gini (� ¼ 0:0) can improve the fairness of the model. However, the performance of the model may be degraded.

From Fig. 8 and Fig. 9, we can see that, when � ¼ 1:0, the fairness and training accuracy of FedGini fluctuate most vio-
lently, while when � ¼ 0:0, the fairness and training accuracy are the most stable. The jitter of the curve reflects the differ-
ence in training accuracy and fairness of the global model of two adjacent iterations. In federated learning, the number of
clients participating in each round is less than the total number of clients. The curve jitter is strong, indicating that the model
is more inclined to the clients participating in the training, as the clients participating in each round are different, the train-
ing accuracy and fairness change too much. Fairness intervention can reduce the dependence of the model on the participat-
ing clients, because if the client performs well, it will be given a lower weight. It can be seen that the smaller the �, that is, the
greater the fairness constraint, the more stable the accuracy and fairness of the model.
Fig. 6. The average training accuracy under different intervention time.
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Fig. 7. The Gini coefficient of training accuracy under different intervention time.

Table 3
Training accuracy and fairness results under different fairness constraints.

Datesets � Accuracy Worst 10% Best 10% Variance Gini

Synthetic-11 � ¼ 1:0 79.01%�0.47 36.63%�3.89 100%�0 502�38 0.154�0.006
� ¼ 0:5 79.02%�0.50 37.38%�4.41 100%�0 501�39 0.153�0.006
� ¼ 0:0 79.17%�0.61 39.31%�5.78 100%�0 484�52 0.151�0.008

Sent140 � ¼ 1:0 66.91%�3.67 29.52%�7.60 98.26%�1.85 412�115 0.171�0.032
� ¼ 0:5 67.24%�2.88 29.89%�7.89 98.23%�1.90 411�131 0.169�0.032
� ¼ 0:0 67.18%�1.24 31.36%�4.70 97.82%�1.62 424�78 0.163�0.018

Cifar10-05 � ¼ 1:0 66.23%�0.53 58.22%�0.74 73.89%�0.67 21�2 0.039�0.002
� ¼ 0:5 66.50%�0.39 58.65%�0.55 74.06%�0.71 21�1 0.038�0.002
� ¼ 0:0 65.41%�0.38 57.88%�0.56 72.72%�0.67 20�2 0.038�0.002

Fig. 8. Average training accuracy under different fairness constraints.

Fig. 9. The Gini coefficient of training accuracy under different fairness constraints.
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5. Conclusion

In this paper, we study the fairness problem for heterogeneous federated learning. Firstly, we use Gini coefficient to quan-
tify the fairness of federated learning, which can reflect the fairness of federated learning process in each round; Secondly,
different from the previous methods, we divide federated learning into two different stages: label fitting and data fitting, and
propose fairness intervention in the data fitting stage, which will not affect the real direction of global model update, but also
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achieve the desired fairness; Then, we propose a fairness federated optimization algorithm, which introduces the fairness
penalty term into the objective function, and obtains the relationship between the clients’ gradient updates and the global
model fairness through gradient descent, so as to improve the fairness of the model while maintaining the performance of
the global model; Finally, in order to evaluate the effectiveness and fairness of our method, we conduct experiments on Syn-
thetic, Sent140 and Cifar10 respectively, and the experimental results prove the effectiveness and fairness of our method.

However, our method also has some shortcomings. For example, for the dataset with fast convergence, our intervention
time strategy has little effect because there is no obvious boundary between label fitting and the data fitting stage. In addi-
tion, we cannot find the optimal dividing point of label fitting and data fitting stage in the case that only a small number of
clients are selected to participate in the training in each iteration. We will continue to discuss this issue in-depth in our
future work.
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Appendix A. Convergence Analysis

The objective function of the global model is as follows:
F wð Þ ¼ 1
K

XK
k¼1

Fk wð Þ þ kG F1 wð Þ; F2 wð Þ; . . . ; FK wð Þð Þ: ðA:1Þ
The gradient of the global model is calculated as follows:
@F wð Þ
@w

¼ �
K

XK
k¼1

Dwk þ 1� �ð Þ k k� 1ð ÞXK
k¼1

k k� 1ð Þ
Dwk: ðA:2Þ
We use Mk to represent k k�1ð ÞPK

k¼1
k k�1ð Þ

, then Eq. (A.2) can be rewritten as follows:
@F wð Þ
@w

¼ �
K

XK
k¼1

Dwk þ 1� �ð ÞMkDwk: ðA:3Þ
Assumption 1. The objective function of all clients Fk; k ¼ 1;2;3; . . . ;Kf gð Þ are L-smooth, that is, for all model parameter
matrices v and w, the following inequality holds:
Fk vð Þ 6 Fk wð Þ þ v �wð ÞTDFk wð Þ þ L
2
v �wk k22: ðA:4Þ
Assumption 2. The objective function of all clients Fk; k ¼ 1;2;3; . . . ;Kf gð Þ are l-strongly convex, that is, for all model
parameter matrices v and w, the following inequality holds:
Fk vð Þ P Fk wð Þ þ v �wð ÞTDFk wð Þ þ l
2
v �wk k22: ðA:5Þ
Assumption 3. For each client k, k 2 1;2;3; . . . ;Kf gð Þ, in each iteration t, t 2 1;2;3; . . . ; Tf gð Þ, the expected squared norm of
stochastic local gradients is bounded:
E Dwt
k

�� ��2 6 G2: ðA:6Þ
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Definition 1. We use the following formula to quantify the degree of data heterogeneity in federated learning:
C ¼ F� �
XK
k¼1

F�
k: ðA:7Þ
where F� is the optimal function value of the global objective function, F�
k is the optimal function value obtained by optimiz-

ing the client k. If the data is IID, then cwill become zero as the number of data samples increases. If the data is Non-IID, that
is, heterogeneous, cis non-zero, and its size reflects the heterogeneity of data.
Lemma 1. In t-th iteration, the distance between the local parameter matrix wt
k and the global parameter matrix wt is

bounded:
E
XK
k¼1

wt �wt
k

�� ��2 6 t � t0ð Þ2a2G2: ðA:8Þ
Proof 1.
E
XK
k¼1

wt �wt
k

�� ��2 ¼ E
XK
k¼1

wt
k �wt0

� �� wt �wt0

� ��� ��2
6 E

XK
k¼1

wt
k �wt0

�� ��2 ðA:9Þ
By Jensen inequality, we have:
wt
k �wt0

�� ��2 ¼
Xt�1

t¼t0

aDwt
k

�����
�����
2

6 t � t0ð Þ
Xt�1

t¼t0

a2 Dwt
k

�� ��2 ðA:10Þ
Plugging Eq. (A.10) into Eq. (A.9), we have:
E
XK
k¼1

wt �wt
k

�� ��2 6
XK
k¼1

E
Xt�1

t¼t0

t � t0ð Þa2 Dwt
k

�� ��2
6
XK
k¼1

Xt�1

t¼t0

t � t0ð Þa2G2

6
XK
k¼1

t � t0ð Þ2a2G2

6 t � t0ð Þ2a2G2

ðA:11Þ
Lemma 2. Results of one step gradient descent:
wtþ1 �w��� ��2 6 1� lað Þ wt �w��� ��2 þ 2
X
k2St

wt �wt
k

�� ��2 þ 6a2LC: ðA:12Þ
Proof 2.
wtþ1 �w��� ��2 ¼ wt � a
X
k2St

DFk wt
k

� ��w�
�����

�����
2

¼ wt �w�k k2 � 2a
X
k2St

DFk wt
k

� �
;wt �w� þ a2

X
k2St

DFk wt
k

� ������
�����
2 ðA:13Þ
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Plugging Eq. (A.3) into Eq. (A.13), we have:
wtþ1 �w��� ��2 6 wt �w��� ��2 � 2a�
X
k2St

Dwt
k;w

t �w� � 2a 1� �ð ÞMkDwt
k;w

t �w� þ a2�2
X
k2St

Dwt
k

�����
�����
2

þ a2 1� �ð Þ2
X
k2St

Dwt
k

�����
�����
2

ðA:14Þ
By Cauchy-Schwartz inequality and AM-GM inequality, we have:
� 2DFk wt
k

� �
;wt �wt

k 6
1
a

wt �wt
k

�� ��2 þ a DFk wt
k

� ��� ��2: ðA:15Þ
As Fk 	ð Þ is l-strongly convex, we have:
� DFk wt
k

� �
;wt

k �w� 6 � 1
l

wt
k �w��� ��2 � Fk wt

k

� �� Fk w�ð Þ� �
: ðA:16Þ
As Fk 	ð Þ is L-smooth, we have:
DFk wt
k

� ��� ��2 6 2L Fk wt
k

� �� F�
k

� �
: ðA:17Þ
By Cauchy-Schwartz inequality and AM-GM inequality, we have:
�2MkDwt
k;w

t �w� 6 a MkDwt
k

�� ��2 þ 1
a wt �w�k k2

6 a Dwt
k

�� ��2 þ 1
a wt �w�k k2:

ðA:18Þ
Plugging Eq. (A.15), Eq. (A.16), Eq. (A.17), and Eq. (A.18) into Eq. (A.14), we have:
wtþ1 �w��� ��2 6 wt �w�k k2 þ e wt �wt
k

�� ��2 þ a2e
X
k2St

Dwt
k

�����
�����
2

þ 1� eð Þ wt �wt
k

�� ��2 þ a2 1� eð Þ
X
k2St

Dwt
k

�����
�����
2

þa2�2
X
k2St

Dwt
k

�����
�����
2

þ a2 1� �ð Þ2
X
k2St

Dwt
k

�����
�����
2

¼ wt �w�k k2 þ 2a2 DFk wt
k

� ��� ��2 þ wt �wt
k

�� ��2
6 wt �w�k k2 þ 2La2

X
k2St

Fk w
t

k

� 	
� F�

k

� 	

þa
X
k2St

1
a wt �wt

k

�� ��2 þ a DFk wt
k

� ��� ��2� �

�2a
X
k2St

1
l wt

k �w��� ��2 þ Fk wt
k

� �� Fk w�ð Þ� � ¼ 1� lað Þ wt �w�k k2 þ
X
k2St

wt �wt
k

�� ��2 

þ |{z}4La2
X
k2St

Fk w
t

k

� 	
� F�

k

� 	
� 2a

X
k2St

Fk w
t

k

� 	
� Fk w�ð Þ

� 	
A

:

ðA:19Þ
We next aim to bound A. We define c ¼ 2a 1� 2Lað Þ, where a 6 1
4L, and a 6 ct 6 2a. We split A1 into two terms:
A ¼ �2a 1� 2Lað Þ
X
k2St

Fk w
t

k

� 	
� F�

k

� 	
þ 2a

X
k2St

Fk w
�� �

� F�
k

� �

¼ �c
X
k2St

Fk w
t

k

� 	
� F�

� 	
þ 2a� cð Þ

X
k2St

F� � F�
k

� �
¼ |{z}�cX

k2St
Fk w

t

k

� 	
� F�

� 	
B

þ 4La2C

ðA:20Þ
As Fk 	ð Þ is l-strongly convex and L-smooth, by AM-GM inequality, we have:
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X
k2St

Fk wt
k

� �� F�� � ¼
X
k2St

Fk wt
k

� �� Fk wtð Þ� �þX
k2St

Fk wtð Þ � F�ð Þ

P
X
k2St

DFk wtð Þ;wt
k �wt þ F wtð Þ � F�ð Þ

P � 1
2

X
k2St

1
a wt �wt

k

�� ��2 þ a DFk wt
k

� ��� ��2h i
þ F wtð Þ � F�ð Þ

P �
X
k2St

1
2a wt �wt

k

�� ��2 þ aL Fk wtð Þ � F�
k

� �h i
þ F wtð Þ � F�ð Þ:

ðA:21Þ
Plugging Eq. (A.21) into Eq. (A.20), we have:
A ¼ c
X
k2St

1
2a wt �wt

k

�� ��2 þ aL Fk wtð Þ � F�
k

� �h i
�c F wtð Þ � F�ð Þ þ 4La2C

¼ c aL� 1ð Þ
X
k2St

Fk wtð Þ � F�ð Þ þ 4La2Cþ caL
� �

Cþ c
2a

X
k2St

wt �wt
k

�� ��2:
ðA:22Þ
We have:
aL� 1 6 �3
4
6 0; ðA:23Þ

X
k2St

Fk wt
� �� F�� � ¼ F wt

� �� F� P 0; ðA:24Þ

C P 0; ðA:25Þ

4La2 þ caL 6 6a2L; ðA:26Þ

Therefore:
A 6 6La2Cþ
X
k2St

wt �wt
k

�� ��2: ðA:27Þ
Plugging Eq. (A.27) and Eq. (A.8) into Eq. (A.19), we have:
wtþ1 �w��� ��2 6 1� lað Þ wt �w��� ��2 þ 2
X
k2St

wt �wt
k

�� ��2 þ 6a2LC: ðA:28Þ
Theorem 1. We define:
Dt ¼ E wt �w��� ��2; ðA:29Þ

By Lemma 2, we have:
Dtþ1 6 1� alð ÞDt þ a2B; ðA:30Þ

where B ¼ 6LCþ 2 t � t0ð Þ2G2.

We assume that a is a diminishing stepsize, and at ¼ b
tþc, where b > 1

l and c > 0.

The global model has the following Convergence:
Dt 6
m

cþ t
; ðA:31Þ
where
m ¼ max
b2B

bl� 1
; cþ 1ð ÞD1

( )
: ðA:32Þ
Proof 3. We prove it by induction.

First, the definition of m can ensures that when t ¼ 1;D1 6 m
cþ1.

We assume that for some t;Dt 6 m
cþt.

We prove that for t þ 1;Dt þ 1 6 m
cþtþ1:
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Dtþ1 6 1� atlð ÞDt þ a2
t B

6 1� bl
tþc

� �
t

tþcþ b2B
tþcð Þ2

¼ tþc�1
tþcð Þ2 þ

b2B
tþcð Þ2 �

bl�1
tþcð Þ2 m

h i
6 m

tþcþ1

ðA:33Þ
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